

NREL Science Drives Innovation

Renewable **Power**

Solar

Wind

Water

Geothermal

Sustainable Transportation

Bioenergy

Vehicle Technologies

Hydrogen

Energy Efficiency

Buildings

Advanced Manufacturing

Government Energy Management

Energy Systems Integration

Grid Integration

Hybrid Systems

Security and Resilience

Hydrogen research at NREL: Production and integration with Grid/renewables

Grid Services

Electrolyzers as dispatchable loads integrated with power generation systems to mitigate disturbances

Renewables

Transient operations with AC and DC power operation and analysis: coupling to wind, OSW, MHK, PV, DCFC

Control

Energy systems control & optimization with Electrolysis, storage, end use as subsystems

Cell/Stack

Multiple stack test beds capable of variable sizes and operation conditions, including BOP

Molecules

Biological production of RNG through CO₂ and H₂ feedstocks

Hydrogen research at NREL: Infrastructure

Fueling

HD fueling protocol support, 70MPa and -40°C fast fueling, HD station design and operations

Operations

Compression, storage management, precooling, safety controls, back-to-back and simultaneous fueling

Storage

Low, medium, high pressure ground storage, on-board vehicle storage (LD, HD), Type I – IV storage vessels

Components

Reliability of early market components: valves, breakaways, nozzles, hoses

Hydrogen

On-site production for closed and openloop H₂ research activities, tube trailer deliveries

Hydrogen research at NREL: Analysis and modeling

Energy Systems

Bulk and distribution grid interactions with electrolyzers, front end controllers, station integration

Station Capacity

CEC hydrogen station capacity model, NREL internal model for station level simulations

Thermodynamics

H2FillS transient model for hydrogen vehicle filling simulation – station storage through vehicle

Systems Analysis

Process TEA, market status and adoption projections, resource assessment, costbenefit analysis, financial analysis

Public Data

Composite data products from retail hydrogen stations: safety, reliability, performance, cost, etc.

Hydrogen research at NREL: Safety

Integration

Integrate safety research into codes and standards

Components

Quantify component performance and failures from the field and in the lab

Sensors

Verify, validate, and develop prototype sensors with high accuracy and low cost

Monitoring

Development and deployment of sensors and safety systems for hydrogen purity, leak detection

Outreach

Connect users to safety requirements to advance safe deployment

U.S. DOE and Hydrogen Fuel Cell Technology Office H2@Scale Vision imagines a robust hydrogen economy

Project Financial Analysis with H2FAST

Revenue from hydrogen sales

from electricity co-production

Cost attribution

The **Hydrogen Financial Analysis Scenario Tool** (H2FAST)

- Generally accepted accounting principles (GAAP) analysis of individual hydrogen infrastructure projects (production, distribution, retail)
- statements, balance sheets.

Real levelized values (\$/kg H₂)

Operating revenue

■ Financing cash outflow

\$3.33 \$1.28

3 General Process Plants In Methane Pyrolysis Program

Hydrogen-centric processes

- Produces low-value carbon (e.g. graphitic carbon)
- Majority of revenue generated from sale of hydrogen

Carbon-centric processes

- Produces high value carbon (e.g. nanotubes)
- Majority of revenues are from carbon products and hydrogen comprises small portion of overall revenue
- Can yield lowest cost hydrogen

Carbon upgrading processes

- Upgrades low value carbon products
- Does not produce hydrogen

Common Assumptions Among Project Analysis

Plant operating assumptions

- Start year 2020
- N'th plant capital cost estimate
- On-stream factor 95%
- Construction period 12 months
- Demand ramp-up 0 years
- Labor rate (fully loaded) \$69/h

Financing assumptions

- After-tax nominal discount rate 8%
- Debt to equity ratio: 1.5
- Interest rate: 3.7%
- Income tax rate (federal & state) 25.7%
- Depreciation method 10-year MACRS
- General inflation 1.9%
- Working capital (liquidity): 1 month of operating expenses
- Reference dollars \$2020 (cost reported for first year and subject to general inflation escalation in subsequent years)

Energy & feedstock cost assumptions

- Cost of industrial natural gas EIA 2021 Reference Case (\$4.08/mmBTU in 2021)
- Cost of industrial electricity EIA 2021 Reference Case (7.3¢/kWh in 2021)
- Catalyst replacement cost escalation 1.9%
- Waste heat value = direct displacement rate of natural gas combustion
- Cost of $CO_2 = $0/ton$
- Waste disposal = \$0/ton

Hydrogen-Centric Process 03 PARC, 2018 Open (Brad Rupp team)

Graphitic carbon = \$100/m.ton

Graphitic carbon = \$500/m.ton

Nano-tube Centric Process Stanford TINA 2019 (Matteo Cargnello team)

9 years

0.300 \$

Low C value case: (\$200/tonne graphitic, \$1000/tonne nanotubes)
Low C- value-> Highest H₂ revenue needed \$0.88/kg

Mid C value case: (\$300/tonne graphitic, \$5,000/tonne nanotubes)
Low C- value-> H₂ revenue is not needed to achieve financial performance (negative \$3.3/kg H₂)

Hgih C value case: (\$400/tonne graphitic, \$10,000/tonne nanotubes)
Low C- value-> H₂ revenue is not needed to achieve financial performance (negative \$8.5/kg H₂)

Carbon upgrading process 05 JHU TINA 2019 (Chao Wang team)

Real levelized value breakdown of carbon fiber (\$/kg)

Methane Pyrolysis Has Potential of Satisfying the Hydrogen Energy Earthshot

Pyrolysis May be Prudent Addition to Pathways of Supply Chain Modeling In SERA

The SERA model simulates least-cost hydrogen infrastructure supply systems for urban FCEV markets

SERA

Energy Resources

Hydrogen **Storage & Delivery Production**

Retail Station Networks

Los Angeles

- Energy prices (natural gas,
- Renewables (biomass, solar, wind)

electricity, etc.)

 Terrain, rights of way, etc.

- Central and onsite production facilities
- Capacity sized to meet forecasted demand
- Economies of scale balanced with delivery costs

- Truck delivery, rail, and pipeline.
- Cost is sensitive to volume, distance
- Seasonal and weekly storage
- Networked supply to multiple cities

- Coverage stations for **FCEV** introductions
- Station sizes increase with market growth
- Liquid and pipeline delivery networks compete for large stations

Thank you.

Contact information:

mike.penev@nrel.gov

www.nrel.gov

H2FAST model, case studies, and documentation: https://www.nrel.gov/hydrogen/h2fast.html

NREL H2 Production Economic Tools: H2A

